OpenCourseWare @UNIMAS

2nd Order ODE

Hishammudin Afifi Bin Huspi Faculty of Engineering Universiti Malaysia Sarawak

Learning Objective:

- 1. To understand the preliminary theory on linear equations
- 2. To identify the types of 2nd order Ordinary Differential Equation
- 3. To apply the 2nd order Ordinary Differential Equation

We can solve first-order DE by recognizing them as:

- Separable
- Linear equations
- Exact equations
- Solutions By Substitutions

- Ordinary differential equations (ODEs) can be divided into two larger classes, linear ODEs and non linear ODEs.
- Non linear 2nd order ODEs are generally difficult to solve, whereas linear 2nd order ODE are much simpler because there are standard methods for solving many of these equations.
- In the following chapters, our main goal will be to find solution for <u>second order linear</u> differential equation.

Chapter Contents:

- Preliminary Theory on Linear Equations
- Reduction of Order
- Homogeneous Linear Equations with Constant Coefficients
- Undetermined Coefficients
- Variation of Parameters
- Cauchy-Euler Equation

A linear second-order differential equation has the form:

$$R(x)y''+P(x)y'+Q(x)y=S(x)$$

When $R(x) \neq 0$, we can divide this equation by R(x) and obtain the special linear equation:

$$y''+p(x)y'+q(x)y = f(x)$$
 _____(1)

So, how can we produce all solutions of equation (1)?

Theory of Solutions of y'' + p(x)y' + q(x)y = f(x)

Consider a simple 2nd order linear equation as below:

$$y''-12x=0$$

We can also write as

$$y''=12x$$

Integrate gives
$$y' = \int y'' dx = \int 12x dx = 6x^2 + C$$
 Integrate again
$$y = \int y' dx = \int (6x^2 + c) dx = 2x^3 + Cx + K$$

This solution is defined for all value of x, and contains TWO arbitrary constants. It is natural that the solution of a second order equation, involving TWO integrations, should contain **TWO arbitrary constants**.

Theory of Solutions of y'' + p(x)y' + q(x)y = f(x)

For different values of constants C and K, the integral curves for

$$y = 2x^3 + Cx + K$$

Theory of Solutions of y'' + p(x)y' + q(x)y = f(x)

Suppose we want a solution satisfying the initial condition:

$$y = 2x^{3} + Cx + K y(0) = 3$$
Then,
$$y = 2(0) + c(0) + K = 3$$

$$K = 3$$

Thus, the general solution $y = 2x^3 + Cx + 3$

Where all the solutions will pass through (0,3). Some of these curves are as shown in following slide.

Theory of Solutions of y'' + p(x)y' + q(x)y = f(x)

For different values of constants C, the integral curves for

$$y = 2x^3 + Cx + 3$$

where all solutions pass through (0,3)

Theory of Solutions of y'' + p(x)y' + q(x)y = f(x)

Suppose, we also specify the initial condition:

From

$$y = 2x^{3} + Cx + K$$
 $y'(0) = -1$
 $y' = 6x^{2} + C$
 $-1 = 6(0)^{2} + C$
 $C = -1$

Thus, the exact solution that satisfies both initial conditions

$$y(0) = 3$$
 and $y'(0) = -1$ is $y(x) = 2x^3 - x + 3$

Theory of Solutions of y'' + p(x)y' + q(x)y = f(x)

Theory of Solutions of y'' + p(x)y' + q(x)y = f(x)

From this example, we can summarize that:

- 1. General solution for a second-order differential equation involved TWO arbitrary constants.
- 2. Initial condition y(0) = 3, specifies that the solution curve must pass through (0,3) and determined one of the constants.
- 3. Initial condition y'(0) = -1, selects the solution curve that pass through (0,3) with the slope of -1 and gives a <u>unique solution</u> the problem.

Theory of Solutions of y'' + p(x)y' + q(x)y = f(x)

Thus, from
$$y''+p(x)y'+q(x)y=f(x)$$

There are TWO initial conditions:

One specifying a point lying on the solution curve, and the other its slope at that point.

This problem has the form

$$y''+p(x)y'+q(x)y = f(x); y(x_0) = A, y'(x_0) = B$$

in which A and B are given real numbers.

Homogeneous Linear 2nd Order ODEs

When f(x) is identically zero in y''+p(x)y'+q(x)y = f(x)

$$y''+p(x)y'+q(x)y=0$$
 is called **homogenous**.

Homogeneous simply means the right side of the equation is ZERO.

Example:

$$2y''+3y'-5y=0$$

$$xy''+y'+xy=0$$

$$y''+25y=e^{-x}\cos x$$

Homogeneous linear 2nd order DE Homogeneous linear 2nd order DE Nonhomogeneous linear 2nd order

Homogeneous Linear 2nd Order ODEs: Superposition Principle

For the homogeneous equation, the backbone of this structure is the superposition principle or linearity principle, which says that:

Further solutions can be obtain from given ones by adding them or by multiplying them with any constants.

This is a great advantage of homogeneous linear ODEs.

Homogeneous Linear 2nd Order ODEs: Superposition Principle

Example 1:

The functions $y = \cos x$ and $y = \sin x$ are solutions of the homogeneous linear ODE y'' + y = 0 for all x.

Let's verify for
$$y = \cos x$$
; $y' = -\sin x$; $y'' = -\cos x$
Substitute in $y'' + y = (-\cos x) + \cos x = 0$ (verified)

Verify for
$$y = \sin x$$
; $y' = \cos x$; $y'' = -\sin x$
Substitute in $y'' + y = (-\sin x) + \sin x = 0$ (*verified*)

If we multiply $\cos x$ by any constant, $\sin x + 4.7$ and $\sin x +$

Homogeneous Linear 2nd Order ODEs: Superposition Principle

From Example 1, we have obtained $y_1 = \cos x$ and $y_2 = \sin x$, and this gives a function of the form:

$$y = c_1 y_1 + c_2 y_2$$
 (c₁ and c₂ are arbitrary constants)

This is called a **linear combination** of y_1 and y_2 .

From this, we can formulate the result by superposition principle or linearity principle.

Homogeneous Linear 2nd Order ODEs: Superposition Principle

Theorem on Superposition Principle – Homogeneous Equations

Let y_1 and y_2 be solutions of the homogeneous linear second order differential equation on an interval I

$$y'' + p(x)y' + q(x)y = 0$$

Then the linear combination $y = c_1 y_1 + c_2 y_2$

is also a solution on the interval. In particular, for such an equation, sums and constant multiples of solutions are again solutions.

Note: This theorem does not apply for Nonhomogeneous equations.

Homogeneous Linear 2nd Order ODEs

The point of taking linear combinations $c_1y_1 + c_2y_2$ is to obtain more solutions from just two solutions.

However, if y_2 is already a constant multiple of y_1 , then

$$c_1 y_1 + c_2 y_2 = c_1 y_1 + c_2 k y_1 = (c_1 + k c_2) y_1$$

is just another constant multiple of y_1 . Thus y_2 is redundant.

Homogeneous Linear 2nd Order ODEs

Linear Dependence or Linear Independence

Two functions f and g are said to be **linearly dependent** on an interval I if, for some constant c, either f(x)=cg(x) for all x in I, or g(x)=cf(x) for all x in I.

If f and g are not linearly dependent on I, then they are said to be **linearly independent** on the interval.

Homogeneous Linear 2nd Order ODEs

Simple test to determine whether TWO solutions are linearly independent on an interval:

Wronskian

Suppose each solutions y_1 and y_2 possess at least n-1 derivatives. The 2x2 determinant

$$W(x) = \begin{vmatrix} y_1(x) & y_2(x) \\ y_1'(x) & y_2'(x) \end{vmatrix}$$

$$W(x) = y_1(x)y_2'(x) - y_1'(x)y_2(x)$$

Homogeneous Linear 2nd Order ODEs

For linearly independent solutions

$$W(x) = y_1(x)y_2'(x) - y_1'(x)y_2(x) \neq 0$$

for every x in the interval.

Homogeneous Linear 2nd Order ODEs

This gives further definition of solutions:

- 1. If y₁ and y₂ are linearly independent, these are called **Fundamental Set of Solutions**.
- 2. If y_1 and y_2 are Fundamental Set of Solutions, then the **general solution** of the equation is

$$y = c_1 y_1 + c_2 y_2$$

Homogeneous Linear 2nd Order ODEs

Example 2:

The functions $y_1 = e^{3x}$ and $y_2 = e^{-3x}$ are both solutions of the homogeneous linear equation y''-9y=0 on the interval $(-\infty,\infty)$. Verify by inspection that the solutions are linearly independent on the x-axis.

Solution:

$$W(e^{3x}, e^{-3x}) = \begin{vmatrix} e^{3x} & e^{-3x} \\ 3e^{3x} & -3e^{3x} \end{vmatrix} = -6 \neq 0$$
 Linearly independent

Thus, y_1 and y_2 form a fundamental set of solutions, and consequently,

Nonhomogeneous Linear 2nd Order ODEs

Similar ideas used for homogeneous equation can be used to develop solution for nonhomogeneous equation

$$y''+p(x)y'+q(x)y = f(x)$$

Let y₁ and y₂ be a fundamental set of solutions of

$$y''+p(x)y'+q(x)y=0$$

Let y_p be any solution of equation y''+p(x)y'+q(x)y=f(x)

Then, the solution Φ will be

$$\varphi = c_1 y_1 + c_2 y_2 + y_p$$

Nonhomogeneous Linear 2nd Order ODEs

Thus, for equation
$$y''+p(x)y'+q(x)y=f(x)$$
 the **general**

solution is
$$\varphi = c_1 y_1 + c_2 y_2 + y_p$$

Nonhomogeneous Linear 2nd Order ODEs

In summary, we can solve nonhomogeneous equation y''+p(x)y'+q(x)y=f(x) by the following strategy:

- 1. Find the general solution $c_1y_1 + c_2y_2$ of the associated homogeneous equation y'' + p(x)y' + q(x)y = 0
- 2. Find any solution y_p of y''+p(x)y'+q(x)y = f(x)
- 3. Write the general solution $c_1y_1 + c_2y_2 + y_p$ This expression contains all possible solutions of the nonhomogeneous differential equation.

Nonhomogeneous Linear 2nd Order ODEs

In other words, the general solution of the nonhomogeneous equation is then

y = complementary functions + any particular functions

$$y = y_c + y_p$$

 $y = c_1 y_1 + c_2 y_2 + y_p$

Nonhomogeneous Linear 2nd Order ODEs

Example 3:

Verify that the given function is the general solution of the nonhomogeneous differential equation:

$$y''-7y'+10y = 24e^x$$

 $y = c_1e^{2x} + c_2e^{5x} + 6e^x$

Solution 3:

Nonhomogeneous equation, $y''-7y'+10y = 24e^x$ ---- (1)

Associated homogeneous equations, y''-7y'+10y=0 ----- (2)

If function $y = c_1 e^{2x} + c_2 e^{5x} + 6e^x$ is a general solution to equation (1), then function $y = c_1 e^{2x} + c_2 e^{5x}$ is a general solution to equation (2).

Let $y = c_1 e^{2x} + c_2 e^{5x}$ ----- (3) $y = c_1 y_1 + c_2 y_2$

First, prove that both y_1 and y_2 are both solutions to DE (2). Differentiate y_1 and y_2 twice :

$$y_1 = e^{2x}$$
 $y_2 = e^{5x}$
 $y_1' = 2e^{2x}$ $y_2' = 5e^{5x}$
 $y_1'' = 4e^{2x}$ $y_2'' = 25e^{5x}$

Substitute y₁ and its derivatives into left-hand side of DE (2):

LHS: $4e^{2x} - 7(2e^{2x}) + 10e^{2x} = 0$

RHS = 0, thus verified that y_1 is a solution of the DE.

Substitute y_2 and its derivatives into left-hand side of DE (2):

LHS: $25e^{5x} - 7(5e^{5x}) + 10e^{5x} = 0$

RHS = 0, thus verified that y_2 is a solution of the DE.

Definition of a General Solution:

- 1. If y_1 and y_2 are linearly independent, these are called Fundamental Set of Solutions.
- 2. If y_1 and y_2 are Fundamental Set of Solutions, then the general solution of the equation is

$$y = c_1 y_1 + c_2 y_2$$

So next, prove that y_1 and y_2 form a Fundamental Set of Solutions by proving that they are linearly independent.

Using Wronskian method:

$$W(e^{2x}, e^{5x}) = \begin{vmatrix} e^{2x} & e^{5x} \\ 2e^{2x} & 5e^{5x} \end{vmatrix}$$

$$W(e^{2x}, e^{5x}) = e^{2x} . 5e^{5x} - 2e^{2x} . e^{5x}$$

$$W(e^{2x}, e^{5x}) = 3e^{7x} \neq 0$$

Verified that both y_1 and y_2 are:

- 1. Solutions for the homogenous linear DE y''-7y'+10y=0
- 2. Linearly independent.

Thus, y_1 and y_2 form a Fundamental Set of Solution.

Next, prove that y_p is the solution for the nonhomogeneous equation (1).

If function
$$y = c_1 e^{2x} + c_2 e^{5x} + 6e^x$$
 is a valid general solution, then
$$y = c_1 y_1 + c_2 y_2 + y_p$$

Thus,
$$y_p = 6e^x$$

To substitute y_p into nonhomogeneous equation (1), differentiate twice:

$$y_p = 6e^x$$
$$y_p' = 6e^x$$
$$y_p'' = 6e^x$$

Substitute y_p and its derivative into left-hand side of (1):

LHS:
$$6e^x - 7(6e^x) + 10(6e^x) = 6e^x - 42e^x + 60e^x$$

= $24e^x$

RHS =
$$24e^x$$

Found, LHS = RHS, thus verified that $y_p = 6e^x$ is a solution for the nonhomogeneous equation.

Nonhomogeneous Linear 2nd Order ODEs

In summary, to prove that a function is a general solution for a nonhomogeneous equation:

- 1. Prove that y_1 and y_2 are both solutions for the associated homogeneous equation.
- 2. If both y_1 and y_2 are the solutions, prove that both form a fundamental set of solutions by checking if they are linearly independent (using Wronskian).
- 3. If both y_1 and y_2 are the fundamental set of solutions, then $c_1y_1 + c_2y_2$ form the general solution for the homogeneous part.
- 4. Prove that yp is a particular solution for the nonhomogeneous equation.